This is a private scientific website operated by an individual researcher. Not affiliated with Intracom Telecom, IC Intracom or Intracom Defense.

Zur Reduktion arithmetischer Operationen auf die signierte Addition

Autor: Rudolf Stepan · Jahr: 2025 · DOI: 10.5281/zenodo.17679458

Abstract

Dieses Werk zeigt, dass sich arithmetische Grundoperationen auf eine primitive Struktur zurückführen lassen: die Addition mit expliziter Vorzeichensemantik. Durch die Trennung von Operator und Vorzeichen wird sichtbar, dass Subtraktion, Multiplikation und Division keine eigenen Mechanismen benötigen, sondern Varianten iterierter oder negierter Additionsschritte darstellen. Dieses Modell stimmt sowohl mit der mathematischen Struktur als auch mit der Architektur digitaler Recheneinheiten überein.

Inhaltsübersicht (HTML-Kurzfassung)

Einleitung

Die traditionelle Trennung zwischen den Grundrechenarten verdeckt, dass diese Operationen strukturell auf eine gerichtete Akkumulationsoperation zurückgeführt werden können. Subtraktion ist Addition eines negierten Wertes, Multiplikation ist wiederholte Addition, Division ist inverse Wiederholung derselben.

Kernaussagen

Glossar (Auszug)

Zitierhinweis

Stepan, R. (2025). Zur Reduktion arithmetischer Operationen auf die signierte Addition.
Zenodo. https://doi.org/10.5281/zenodo.17679458